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Abstract
We study the emergence and dynamics of pointer states in the motion
of a quantum test particle affected by collisional decoherence. These
environmentally distinguished states are shown to be exponentially localized
solitonic wavefunctions which evolve according to the classical equations of
motion. We explain their formation using the orthogonal unraveling of the
master equation, and we demonstrate that the statistical weights of the arising
mixture are given by projections of the initial state onto the pointer basis.

PACS numbers: 03.65.Yz, 47.45.Ab, 05.40.Jc

1. Introduction

The influence of environmental degrees of freedom has been identified as the key concept
in explaining the classical behavior of macroscopic systems in a quantum framework [1–3].
According to this notion, a preferred set of localized system states—called the pointer basis
[4]—is induced in the course of the interaction of the system with its surrounding. Most
characteristically, any initial superposition of these pointer states gets rapidly mixed, while the
only states that retain their purity for a long time are the pointer states themselves. While the
basic ideas behind the decoherence process seem to be settled, it still remains an open problem
to understand the emergence, the dynamics and the main properties of the pointer states for
microscopic realistic environments.

Several strategies have been proposed so far for determining the pointer basis given the
environmental coupling. In [5], the suggestion was made to sort all pure states in the Hilbert
space according to their linear entropy production rate. The pointer states are then identified
with the states having minimal loss of purity. Similar results are obtained by the approach of
[6–8] which is based on a time evolution equation whose solitonic solutions are identified with
the pointer states. So far, this concept has been applied to the damped harmonic oscillator
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[7, 8] and to a free quantum particle coupled linearly to a bath of harmonic oscillators [6, 8].
There, the solitonic solutions of the corresponding nonlinear equation are coherent states and
Gaussian wave packets, respectively. Moreover, the decoherence to Gaussian pointer states
was proved to be generic for linear coupling models [9].

In this paper, we extend the analysis from linear models to a non-perturbative treatment
of the interaction. We focus on the model of collisional decoherence, which provides a
realistic description of the decoherence process generated by an ideal gas environment.
Notably, experiments with interfering fullerene molecules displayed a reduction of interference
visibility in agreement with this model [10–14]. We derive the corresponding pointer states
which are shown to form an overcomplete, exponentially localized set of basis states, and
we prove decoherence to these states using the orthogonal unraveling of the master equation
[15, 16]. This stochastic process on the one hand provides the statistical weights of the pointer
basis, and on the other hand represents an efficient way of solving master equations which
exhibit pointer states. Moreover, it explains the emergence of classical Hamiltonian dynamics.

The main result was already announced in [17]. Here, we provide a more detailed
explanation of the proofs and derivations. As an extension of [17], we prove the decoherence
dynamics for a more general situation where the localization rate of collisional decoherence
is in a non-saturated regime, and we utilize the relative entropy in order to illustrate the
emergence of the statistical weights.

While the above results are derived within the framework of decoherence theory, they can
also be applied to dynamic reduction models which propose a modification of the Schrödinger
equation by means of nonlinear and stochastic terms. In fact, the observational consequences
of the Ghirardi–Rimini–Weber (GRW) spontaneous localization model [18, 19] are equivalent
to the ones of collisional decoherence, since they are described by the same master equation
[20]. The present work therefore applies to the GRW model. In particular, it provides the
corresponding pointer basis.

The structure of the paper is as follows. In section 2, we briefly review the notion of
pointer states, and we summarize the method for determining the pointer states discussed in
[6–8]. In order to motivate the approach, we consider a two-level system and a dephasing
process. This method is then applied to collisional decoherence in section 3, which provides
a set of solitonic states to be regarded as ‘candidate’ pointer states. We show in section 4
that these solitons form an overcomplete basis of exponentially localized states, and we give
an expression for their spatial extension. Moreover, we demonstrate that the ‘candidate’
pointer states move on classical phase space trajectories if they are sufficiently localized. In
section 5, we briefly review the method of quantum trajectories, focusing in particular on
the orthogonal unraveling of the master equation. This stochastic process is then applied to
collisional decoherence which allows us to show that the ‘candidate’ states are indeed pointer
states in the sense of the definition given in section 2. Furthermore, we use the orthogonal
unraveling to show that the statistical weights of the pointer states are given by the overlap
with the initial state. We present our conclusion in section 6.

2. The pointer basis

2.1. Definition of pointer states

To motivate the definition of pointer states, let us consider the quantum dynamics of the
damped harmonic oscillator. Its evolution can be described by a master equation in Lindblad
form defined by the standard Hamiltonian H = h̄wa†a, and a single Lindblad operator L = a,
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with the associated rate γ [21]. We take as initial state a superposition of two quasi-orthogonal
coherent states

|ψ0〉 = c1|α0〉 + c2|β0〉, with |α0 − β0|2 � 1, (1)

which satisfy a|α〉 = α|α〉, with α ∈ C. It is then easy to show that for times larger than
the decoherence time tdec = 2|α0 − β0|−2/γ , the solution of the master equation is well
approximated by [21, 22]

ρt � |c1|2|αt 〉〈αt | + |c2|2|βt 〉〈βt |, if t � tdec, (2)

with αt = α0 exp(−iwt − γ t/2). Thus, any coherent state remains pure during the damped
time evolution, while any superposition of distinct coherent states decays into a mixture (with a
decay rate γdec = 1/tdec � γ ) whose statistical weights are determined by the initial overlaps
|〈α0|ψ0〉|2 and |〈β0|ψ0〉|2. Due to this property, the coherent states are to be identified with
the pointer states of the damped harmonic oscillator.

The above observation serves as the starting point for the following definition of the
pointer states for an open quantum system evolving according to a Lindblad master equation
∂tρ = Lρ. One suggests that the system exhibits a pointer basis if its dynamics involves a
separation of time scales, characterized by a fast decoherence time tdec, such that for any time
much larger than tdec, the evolved state is well approximated by a mixture of uniquely defined
pure states Pα = |πα〉〈πα| which are independent of the initial state ρ0,

eLt ρ0 �
∫

dα Prob(α|ρ0)Pα(t), if t � tdec, (3)

with Prob(α|ρ0) � 0,
∫

dα Prob(α|ρ0) = 1. Following the above example, we further demand
that for initial states ρ0, which are superpositions of mutually orthogonal pointer states Pβ , the
probability distribution Prob(α|ρ0) = ∑

β wβδ(α − β) is given by the initial projections

wβ = Tr(ρ0Pβ(0)). (4)

The pointer states Pα initially form an (overcomplete) basis, and they may evolve in time,
though slowly compared to tdec.

The name pointer state was coined in [4] due to its relevance for the physical description of
a measurement apparatus. A measurement device which probes an observable A is constructed
such that macroscopically distinct positions of the pointer or indicator are obtained for the
different eigenstates of A. For a quantum system initially prepared in an eigenstate of A, the
read-out will display the corresponding eigenvalue with certainty provided these pointer states
remain pure during the time evolution. On the other hand, if the quantum system is prepared
in a superposition of eigenstates of A, we expect the pointer not to end up in a superposition of
different read-out states, but rather to be at a definite position, though probabilistically, with
probabilities given by the overlap (4).

We emphasize that the importance of pointer states goes beyond the physics of
measurement devices and the quantum-to-classical transition since they are also a practical
tool for the solution of master equations. Knowing the pointer states Pα , their time evolution
Pα(t) and their probabilities Prob(α|ρ0), one can immediately specify the solution of the
master equation for any initial state and times greater than the decoherence time. Since the
decoherence time is generically much shorter than the system and dissipation time scales of
the pointer state motion, this allows one to capture a large part of the system evolution without
solving the master equation.
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Figure 1. Bloch representation of a two-level system subject to pure dephasing, as described by
(5). As t → ∞, the initial state ρ0 = P is projected onto the z-axis, implying that the poles (P↑
and P↓) are the pointer states. The thick line indicates a trajectory within the set of pure states
which connects the initial state to a nearby pointer state (the north pole). The equation of motion
for this trajectory has minimal distance from L(P) among all equations which generate pure state
trajectories.

2.2. Pointer states of pure dephasing

A practical way to obtain the pointer states Pα , for a given environmental coupling, was
discussed in [6–8]. We will illustrate this method by means of a two-level system, suspect to
a dephasing environment. The corresponding master equation in interaction picture,

∂tρ = γ (σzρσz − ρ), (5)

is characterized by the Lindblad jump operator L = σz
√

γ (γ > 0). In Bloch representation,
ρt = 1/2(I + a(t) · σ) with Bloch vector a(t) = Tr (σρ (t)) and Pauli matrices σ =
(σx, σy, σz), the solution reads

a(t) = (e−2γ tax(0), e−2γ tay(0), az(0)). (6)

Thus, the Bloch sphere {a : |a| = 1}, which represents the set of all pure states, is projected
onto the z-axis in the course of the dephasing process. This implies that the decohered state
a(∞) = (0, 0, az (0)) is a mixture of the eigenstates of σz (denoted by P↓ = |↓〉〈↓| and
P↑ = |↑〉〈↑|, respectively):

ρ∞ = Tr[P↑ρ0]P↑ + Tr[P↓ρ0]P↓ . (7)

The comparison with (3) shows that the north and the south pole of the Bloch sphere
(corresponding to P↓ and P↑) form the pointer basis of the pure dephasing process.

Since the solution of the master equation will not be at hand in general, one requires a
method which yields the pointer states without the knowledge of ρt . To motivate this, we note
that the north pole of the Bloch sphere is the asymptotic endpoint of the trajectory illustrated
by the thick line in figure 1. This trajectory is generated by an equation of motion with the
following properties: (i) it is nonlinear because it must distinguish pointer states from their
superpositions: (ii) it preserves the purity of pure initial states, i.e. an initial state which lies
on the Bloch sphere remains on the surface: (iii) the generated trajectory follows the exact
solution of the master equation as close as possible. In order to find such an equation of
motion, it is suggestive to minimize the distance of the initial increments, i.e.

min
∂ta

|L(a) − ∂ta|2, with a · ∂ta = 0. (8)
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Here, L denotes the generator of the master equation (5) in Bloch representation and ∂ta
is subject to the condition that the generated trajectory remains on the surface of the Bloch
sphere. The solution of the above optimization problem reads, in spherical coordinates,

(ṙ, ϕ̇, θ̇ ) = (0, 0,−γ sin(2θ)). (9)

Since the sine is positive for θ ∈ (0, π/2), the solutions of these equations asymptotically tend
toward a pointer state of the system, see figure 1. The equator of the Bloch sphere forms a set
of unstable fixed points of (9).

2.3. Nonlinear equation for pointer states

Let us now generalize the above argument to general Markovian master equations. Replacing
the Euclidean norm by the Hilbert–Schmidt norm ‖·‖HS in the space of operators, the
generalization of (8) to higher dimensional systems reads

min
∂t P

‖L(P) − ∂tP‖2
HS, (10)

where the minimization is with respect to all evolution equations ∂tP = f (P) which propagate
P within the set of pure states, such that P2

t = Pt . It can be shown that the general
structure of an equation that evolves state vectors |ψ〉 preserving their normalization has
the structure ∂t |ψ〉 = (Aψ − 〈ψ |Aψ |ψ〉 + Bψ)|ψ〉, with ψ-dependent, Hermitian and anti-
Hermitian mappings Aψ = A†

ψ and Bψ = −B†
ψ . This implies that the equation of motion for

the projector P = |ψ〉〈ψ | must be of the form ∂tP = [P, [P, XP]], where XP := AP + [BP, P].
Using this form, the optimization problem (10) reduces to minX ‖L(P) − [P, [P, X]]‖HS. As
shown in [7] the solution is determined by the generator of the master equation Xmin = L(P).
Hence, the generalization of (9) reads as [6–8]

∂tP = [P, [P,L(P)]]. (11)

Motivated by the example in section 2.2, one conjectures that the asymptotic solutions of (11)
provide the pointer states in more complex systems as well.

It is important that equation (11) is also known in another context (see below): it
corresponds to the deterministic part of the orthogonal unraveling of the master equation.
As we will demonstrate in section 5, one can use this specific unraveling to prove for a
specific model that the asymptotic solutions of (11) indeed provide the pointer states.

3. Pointer states of collisional decoherence

3.1. Collisional decoherence

In order to assess the nonlinear equation (11) in the context of a nontrivial environmental
coupling we now apply it to the model of collisional decoherence [23, 24]. The latter describes
the motion of a quantum test particle in an ideal gas environment and it accounts for the quantum
effects of the scattering dynamics in a non-perturbative fashion. The corresponding master
equation has Lindblad form:

∂tρ = − i

h̄
[H, ρ] +

∫
dq

(
LqρL†

q − 1

2
L†

qLqρ − 1

2
ρL†

qLq

)
, (12)

where the jump operators are proportional to momentum kick operators, Lq = √
γG(q) eiqx

(with position operator x). The continuous label q has the meaning of a momentum transfer
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experienced by the test particle with G(q) � 0 the corresponding distribution,
∫

dq G(q) = 1;
γ is the collision rate of the gas environment. The 1d equation of motion thus reads

∂tρ = 1

ih̄
[H, ρ] + γ

∫ ∞

−∞
dq G(q) eiqx/h̄ρ e−iqx/h̄ − γρ. (13)

It leads to a localization in position space, i.e. to a loss of spatial coherence, as can be seen by
switching to the interaction picture, ρ̃ = eiHt/h̄ρ e−iHt/h̄, and the position representation

∂t 〈x|ρ̃|x ′〉 = −F(x − x ′)〈x|ρ̃|x ′〉. (14)

The decay rate of the spatial coherences is thus characterized by a localization rate F(s) � 0
which is related to the momentum transfer distribution G(q) by

F(s) = γ

(
1 −

∫ ∞

−∞
dq G (q) eiqs/h̄

)
. (15)

Since the Fourier transform of the distribution G(q) tends to zero for large distances s,
the localization rate saturates for large s at the maximum value given by the collision rate,
F(s → ∞) = γ , which can be interpreted as the limit where one collision is sufficient to
reveal the particles ‘which path’ information. This behavior is in sharp contrast to linear
models, where the localization rate grows quadratically and thus approaches infinity in the
limit of a large separation s.

3.2. Determining the pointer states of collisional decoherence

In order to apply the nonlinear equation (11) to collisional decoherence (13) of a free particle,
that is, H = p2/2m, we rewrite the projector equation (11) in vector representation and choose
for L the Lindblad form (12), which gives [7, 8]

∂t |ψ〉 = 1

ih̄
(H − 〈H〉ψ)|ψ〉 +

∫ ∞

−∞
dq

(〈
L†

q

〉
ψ
(Lq − 〈Lq〉ψ) − 1

2

(
L†

qLq − 〈
L†

qLk

〉
ψ

)) |ψ〉. (16)

The expectation value 〈H〉ψ is disregarded in the following, since it contributes only
an additional phase. Now, we choose the jump operator of collisional decoherence,
Lq = √

γG(q) eiqx, and switch to position representation, which yields

∂tψt (x) = − h̄

2mi
∂2
xψt (x) + ψt(x)[|ψt |2](x), (17)

[|ψt |2](x) = γ

(
|ψt |2 ∗ Ĝ (x) −

∫ ∞

−∞
dy|ψt |2(y)(|ψt |2 ∗ Ĝ)(y)

)
. (18)

Here, g ∗ h(x) ≡ ∫ ∞
−∞ dyg(y)h(x − y) denotes the convolution and Ĝ(x) is the Fourier

transform of G(q), i.e. Ĝ(x) ≡ ∫ ∞
−∞ dqG(q) exp(iqx/h̄).

The two summands in (17) have counteractive effects on the temporal evolution of the
wavefunction: the coherent term leads to its dispersion, whereas the second, incoherent
summand tends to localize the solution. In order to explain this localization, we note that
the second summand in (18) is independent of x. This implies that the centered parts of
the wavefunction, where the convolution |ψt |2 ∗ Ĝ(x) exceeds the constant term in (18), get
amplified, i.e. ∂tψt > 0, whereas the tails of the wavefunction get damped, i.e. ∂tψt < 0.
As a consequence of these competing effects, solutions of (17) evolve toward solitonic states
where both effects are in equilibrium, such that the state moves with fixed shape and constant
velocity. As discussed above, these solitons are candidates for the pointer states of collisional
decoherence.
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Figure 2. Formation of pointer states: an initial superposition of counter-propagating, localized
states is evolved numerically according to the nonlinear equation (19). It forms into a solitonic
solution which moves with a fixed shape and constant velocity. These solitons are interpreted as
the pointer states of collisional decoherence.

Assuming the momentum transfer distribution G(q) to be a centered Gaussian with
variance σ 2

G, we can rewrite (17) in a dimensionless form:

∂τϕτ (y) = − κ

2i
∂2
yϕτ (y) + ϕτ (y)

∫ ∞

−∞
dy ′|ϕτ (y

′)|2

×
(

e−(y−y ′)
2
/2 −

∫ ∞

−∞
dy ′′|ϕτ (y

′′)|2 e−(y ′−y ′′)2/2

)
. (19)

Here we use the dimensionless variables y ≡ σGx/h̄ and τ ≡ γ t to define the dimensionless
wavefunction ϕτ (y) ≡ √

h̄/σGψτ/γ (h̄y/σG). Notably, equation (19) depends only on the
single dimensionless parameter κ ≡ σ 2

G

/
(mh̄γ ).

Figure 2 shows a numerical solution of (19), where we choose a superposition of two
counter propagating localized states φ1,2 as the initial state, ψ0(x) = c1φ1(x) + c2φ2(x). As
expected from the above discussion, the (modulus of the) solution converges to a soliton.
Moreover, we find that the soliton inherits its initial position and momentum expectation
value from that localized component φi of the initial state which has the greatest weight ci,
|ci | > |cj �=i |. Similar observations are found for various other initial states.

4. Properties of the soliton basis

We proceed to characterize the solitonic solutions of (17). In section 4.1, the consequences of
the conservation of probability on the phase of the solitons are analyzed, allowing us to predict
the asymptotic shape of the solitons in section 4.2. In section 4.3, we estimate the spatial
extension of the solitons, followed by the proof that they form a basis of the Hilbert space in
section 4.4. Finally, in section 4.5, we discuss the dynamics of the solitonic solutions in the
presence of an external potential.

4.1. Consequences of the continuity equation

As demonstrated in the previous section, the nonlinear equation (17) exhibits solitonic solutions
πt(x) in the sense that the modulus of πt(x) moves with constants shape and velocity, i.e.

πt(x) = f (x − vt) eig(x,t), (20)

7
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with f � 0 and g real. In this section, we analyze the general structure of the phase g(x, t),
which will be relevant subsequently. The time derivative of a solution |ψt(x)|2 of (17), yields
the continuity equation for ψt(x):

∂t |ψt(x)|2 = − h̄

m
∂x Im(ψ∗

t ∂xψt ) + 2|ψt(x)|2[|ψt |2](x). (21)

Plugging the solitonic solution (20) into (21) gives

−2[f 2](x − vt) − v∂x log f 2(x − vt) = − h̄

m

(
∂2
xg(x, t) + ∂xg(x, t)∂x log f 2(x − vt)

)
.

(22)

Here we have used 
[
f 2

t

]
(x) = [f 2](x − vt), which follows from ft (x) = f (x − vt). The

time dependence of the left-hand side of (22) corresponds to a spatial shift. Thus, also the
right-hand side of (22) must exhibit such a simple time dependence, which implies that

−v∂xr(x, t) = ∂t r(x, t), (23)

where r(x, t) denotes the right-hand side of (22). It follows that

−v∂3
x g(x, t) − v∂2

xg(x, t)∂x log f 2(x − vt) = ∂t∂
2
x g(x, t) + ∂t∂xg(x, t)∂x log f 2(x − vt).

(24)

Since this equation must hold for all x, v and t, we may assume that the equality holds already
for the summands, such that

−v∂2
xg(x, t) = ∂t [∂xg(x, t)]. (25)

Therefore, the temporal and spatial dependence of the phase has the general structure

g(x, t) = φ(x − vt) + χ(t), (26)

with unknown functions φ and χ .

4.2. Asymptotic form of the solitons

To explore the tails of the solitonic states πt(x), let us consider the form of (17) for
asymptotically large positions. It reads

∂tψt (x) ∼ − h̄

2mi
∂2
xψt (x) − γ aψψt(x), for |x| → ∞, (27)

with aψ ≡ ∫ ∞
−∞ dy|ψt |2(y)(|ψt |2 ∗ Ĝ)(y) a ψ-dependent, positive constant. Inserting the

solitonic form (20) into (27) yields

i∂tg(x, t)f (x − vt) = i
h̄

2m

[
∂2
xf (x − vt) − f (x − vt) (∂xg (x, t))2

]
+ vf (x − vt)

− h̄

m

[
∂xf (x − vt)∂xg(x, t) + f (x − vt)∂2

xg(x, t)
] − γ aψf (x − vt). (28)

Using (26), we find that both ∂xg(x, t) and ∂2
xg(x, t) are only a function of xt = x − vt ,

and accordingly, that also the left-hand side of (28) must be a function of xt. If follows that
χ(t) is at most linear in t (that is χ(t) = χ1t + χ0, with unknown constants χ0 and χ1).
Considering the real and imaginary part of (28) separately, one obtains two coupled (second
order) differential equations

v∂xf − γ aψf = h̄

m

(
∂xf ∂xφ +

1

2
f ∂2

xφ

)
, (29)

(χ1 − v∂xφ)f = h̄

2m

(
∂2
xf − f [∂xφ]2

)
, (30)

8
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Figure 3. Semi-logarithmic plot of the numerical solitonic solution of (19). The graph clearly
demonstrates that the pointer states have exponential tails.

where f ≡ f (x − vt) and φ ≡ φ(x − vt). This set of equations has two unique solutions

f (x) = e±k|x|, (31)

φ(x) = ∓sgn(x)
m

h̄

(
v +

γ aψ

k

)
x, (32)

where the constant k > 0 depends on the boundary condition for (29) (which can be determined
only by solving the full nonlinear equation (17)). The solution with the positive exponent in
(31) is irrelevant, since it is not normalizable. Figure 3 confirms that the tails of the numerically
obtained solitonic solutions of (19) are in agreement with the functional form (31); they are
straight lines in the semi-logarithmic plot. This shows that, unlike in linear models [25] where
the pointer states are Gaussian, the pointer states of collisional decoherence are exponentially
localized.

4.3. Size of the solitons

An important characteristic of the pointer states is their spatial extension. As explained in
[17], the latter can be related to the experimentally accessible one-particle coherence length of
a thermal gas. We will determine the pointer width in this section, and apply the result later,
when studying the dynamics of pointer states in an external potential.

As a first step, consider the standard deviation σ̃π of the numerically obtained
dimensionless solitonic solution |π̃(y)|2 of (19) as a function the dimensionless parameter
κ = σ 2

G

/
(γmh̄). As shown by the solid line in figure 4, the size σ̃π increases linearly with κ .

This observation can be reproduced by a simplified model which has the practical
advantage that it can be applied to more complex systems, such as 3D gases with a
microscopically realistic localization rate F [17]. The idea of the model goes as follows:
the ideal gas environment consists of particles which collide with the system at a rate γ . At
each collision, the ambient particles gain position information, such that the wavefunction gets
spatially localized to a length scale �loc determined by the localization rate F, see (14). After
the scattering event, the particle disperses freely, until it gets localized again by a subsequent
collision. The pointer width σπ is then obtained by averaging the time-dependent width of the
wavefunction over the waiting time distribution of a Poisson process.

9
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Figure 4. Spatial extension of the solitonic solution of (19) as a function of the dimensionless
parameter κ = σ 2

G/(γmh̄). The solid line represents the numerical solution of (19). The result of
the localization model (37) with parameter aloc = 0.4 is given by the dashed line.

More specifically, we assume that the length scale �loc is characterized by the free
parameter

a′
loc = F(�loc)

F (∞)
. (33)

Using (15) and taking the momentum transfer distribution G(q) to be a centered Gaussian
with variance σ 2

G , we obtain

�loc = aloc h̄

σG

, (34)

with a2
loc = −2 log(1 − a′

loc). The free dispersion after the collision yields the time-dependent
size

σ 2
π (t) = �2

loc +

(
h̄t

2m�loc

)2

. (35)

Finally, the average over the waiting time distribution Prob(t) = γ e−γ t gives

σπ ≡
∫ ∞

0
dτ Prob(τ )

1

τ

∫ τ

0
dtσπ (t)

� aloc
h̄

σG

+
σG

4alocmγ
, (36)

where we use a linearization of σπ(t) in the second line. The dimensionless version of (36)
reads

σ̃π ≡ σπσG

h̄

= aloc +
1

4aloc
κ. (37)

The dashed line in figure 4 shows that the form of this equation agrees with the numerical
solution of (19); the fit yields a value of aloc � 0.4 for the parameter characterizing the
localization length scale.

4.4. Completeness of the soliton basis

Our next aim is to show that the solitonic solutions of (17), which are interpreted below as
the pointer states of collisional decoherence, form an overcomplete basis. For this purpose,
we first present a general method to construct a whole manifold of solutions of (11) given a

10
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specific one. It relies on the symmetry properties of the corresponding master equation. Since
collisional decoherence exhibits Galilean (i.e. translation and boost) invariance, it is then easy
to show that the pointer states of this model form an overcomplete basis.

Suppose there is a family of unitary operators Ut, satisfying

Ut D(ρ) U†
t = D

(
Ut ρ U†

t

)
, (38)

∂t Ut = 1

ih̄
[H, Ut], (39)

where we denote by D the incoherent part of the master equation, L(ρ) ≡ [H, ρ] /(ih̄)+D(ρ).
Then, given a solution Pt of the nonlinear equation (11), also UtPt U†

t constitutes a solution
of (11).

This can be verified easily:

[UPU†, [UPU†,L(UPU†)]] = 1

ih̄
(HUPU† − UPU†H) + U[P, [P,D(P)]]U†

= 1

ih̄
(HUPU† − UPU†H + UHPU† − UHPU† + UPHU†

− UPHU†) + U[P, [P,D(P)]]U†

= 1

ih̄
[H, U]PU† + U[P, [P,

1

ih̄
[H, P] + D(P)]]U†

− 1

ih̄
UP[U†, H]

= ∂t (UPU†), (40)

where we dropped the time argument for brevity. Here, the first equality makes use of (38)
and the unitarity of U, and the third equality is due to the relation [H, P] = [P, [P, [H, P]]]. In
the last line, we use (11) and (39).

Let us now apply this to the Galilean invariance of master equation (13). We will see that
the phase space translations Ut ≡ Ts,u = exp(i(utx − stp)) satisfy the symmetry conditions
(38) and (39) provided the time dependence of st and ut has the particular form

st = u0 t/m + s0, (41)

ut = u0 . (42)

The latter enacts a phase space translation in accordance with the free shearing motion.
Let us first verify condition (38) using Ts,uf (x)T†

s,u = f (x − s).

Ts,u D(ρ)T†
s,u = γ

∫ ∞

−∞
dq G(q)Ts,u eiqx/h̄ρ e−iqx/h̄T†

s,u − γ Ts,uρT†
s,u

= γ

∫ ∞

−∞
dq G(q) eiq(x−s)/h̄Ts,uρT†

s,u e−iq(x−s)/h̄ − γ Ts,uρT†
s,u

= D
(
Ts,u ρT†

s,u

)
. (43)

In order to verify (39), use the Campbell–Hausdorff formula to rewrite the translation operator
as

Ts,u = exp
(

i
utx

h̄

)
exp

(
−i

stp

h̄

)
exp

(
−i

stut

2h̄

)
. (44)

11
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The time derivative thus yields

∂tTs,u = i

h̄

(
u̇tTs,u − ṡtTs,up − 1

2
(u̇t st + ṡt ut ) Ts,u

)

= i

h̄

(
−ut

m
Ts,up − u2

t

2m
Ts,u

)

= 1

ih̄

[
p2

2m
, Ts,u

]
, (45)

where the shearing transformations (41) and (42) are required in the second line. This confirms
(39) for H = p2/2m.

We conclude that the nonlinear equation (17) exhibits a family of solitonic solutions
P� = Ts,uPT†

s,u, parameterized by the phase space coordinate � = (s0, u0). In order to verify
that this family forms an overcomplete basis, let us consider a specific class of phase space
representations. According to [26], any Hilbert–Schmidt operator A can be represented as

A =
∫

d�A(�)Ts,uQT†
s,u, (46)

provided Q is a trace-class operator, i.e. 0 < Tr(
√

Q†Q) < ∞. Here,
∫

d�· denotes a phase
space integral and A(�) is a function of the phase space coordinate �. Choosing for A the
identity I, and for Q the solitonic solution P0,0 of (17) with vanishing position and momentum
expectations, we obtain a resolution of the identity in terms of the solitons P� = Ts,uP0,0T†

s,u,

I =
∫

d�I (�)P�. (47)

This demonstrates that the pointer states of collisional decoherence form an overcomplete
basis.

4.5. Dynamics in an external potential

So far, we have characterized the solitonic solutions of the nonlinear equation (17) which
applies in the absence of an external force. If an additional potential is present, the
corresponding nonlinear equation contains an additional term V (x)/(ih̄) on the right-hand
side of (17). The numerical treatment shows that the solutions still converge to localized wave
packets, which, however, change their shape and velocity in the course of the evolution. We
find that the center of these wave packets moves on the corresponding classical phase space
trajectory provided the collision rate is sufficiently large. We first summarize our numerical
findings and then proceed with an analytic explanation.

Figure 5 shows the position and momentum expectation values of the numerical solution
of the nonlinear equation, in the case of an anharmonic external potential of the form
V (x) = ax4 −bx2, a, b > 0 (starting from a Gaussian initial state). The panel on the left-hand
side of figure 5 was obtained in the limit of a vanishing collision rate γ (i.e. κ → ∞), which
turns (19) into the Schrödinger equation. The solution therefore disperses and the solid line
shows a typical evolution of the phase space expectation values. The dashed line, on the
other hand, gives the classical trajectory of the phase space point where the initial state is
localized. The result for a large collision rate γ (or small κ) is shown on the right-hand side of
figure 5. Here, the initial state turns rapidly into a soliton whose expectation values move on
the corresponding classical trajectory. This illustrates that the temporal evolution turns from
quantum to classical dynamics with increasing collision rate γ (i.e. decreasing κ). We made
similar observations with various other potentials.

12
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(a) (b)

Figure 5. Time evolution of pointer states in an anharmonic fourth order potential (solid line).
The dashed line shows the corresponding classical phase space trajectory. (a) The collision rate γ

vanishes leading to dispersive quantum dynamics. (b) The collision rate γ is large, such that the
dynamics of the pointer state is indistinguishable from the classical trajectory.

In order to explain the numerical observation, first consider a particle in a linear potential
V (x) = αx. The corresponding nonlinear equation reads as

∂tψt (x) +
h̄

2mi
∂2
xψt (x)

= 1

ih̄
αxψt (x) + γψt(x)

[
|ψt |2 ∗ G̃(x) −

∫ ∞

−∞
dy|ψt |2(y)(|ψt |2 ∗ Ĝ)(y)

]
. (48)

As discussed in section 4.1, the field-free version of this equation (α = 0) exhibits uniformly
moving solitonic solutions of the form

ψt(x) = f (x − vt) exp(i[φ(x − vt) + χ(t)]). (49)

This implies that (48) has solitonic solutions of the form

ψt(x) = f (x − xt ) exp(ig(x − xt , t)), (50)

g(x, t) = φ(x) + χ ′(t) − α

h̄
tx, (51)

with xt = vt − αt2/2m and χ ′(t) = χ(t) − 2α
∫ t

0 dτ xτ /h̄. In order to verify this statement,
we evaluate the left-hand side of (48) with the ansatz given by (50). This yields

∂tψt (x) +
h̄

2mi
∂2
xψt (x) = eig

(
α

ih̄
xf + if ∂tχ

′ (t) +
2α

h̄
ixtf − v(∂xf + if ∂xφ)

+
h̄

m

(
∂xf ∂xφ − i

2
∂2
xf +

i

2
f (∂xφ)2 +

1

2
f ∂2

xφ

))
, (52)

with g ≡ g(x − xt , t), f ≡ f (x − xt ) and φ ≡ φ(x − xt ). The expression can be further
simplified by noting that the free soliton (49) is a solution of the field-free version of (48),
implying that

γf [f 2](x) = if ∂tχ(t) − v(∂xf + if ∂xφ)

+
h̄

m

(
∂xf ∂xφ − i

2
∂2
xf +

i

2
f (∂xφ)2 +

1

2
f ∂2

xφ

)
, (53)
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with [f 2](x) defined in (18). Using (52), (53) and the above definition of χ ′(t), one finds
that

∂tψt (x) +
h̄

2mi
∂2
xψt (x) = 1

ih̄
αxψt (x) + γψt(x)[|ψt |2](x), (54)

which confirms that ψt(x) evolves according to (48).
We conclude that in a linear potential, the pointer states have the same shape as in the field-

free case and they are uniformly accelerated like a classical particle. For general potentials,
this implies that the pointer states follow the corresponding classical motion, provided the
spatial width of the solitons is sufficiently small, such that the linearization of the potential
is justified over their spatial extension. Since the size of the pointer states decreases with the
collision rate (see section 4.3), the pointer states must exhibit classical dynamics in the limit
of large collision rates.

5. Orthogonal unraveling

Thus far, we have calculated ‘candidate’ pointer states as the solitonic solutions of (17), and
we have studied their properties and dynamics. Next, it will be shown that these ‘candidates’
are genuine pointer states Pα in the sense of (1). Moreover, we find that the statistical weights
Prob(α|ρ0) of the pointer states are given by the overlap of the initial state ρ0 with the initial
pointer state Pα(0), i.e.

Prob(α|ρ0) = Tr[ρ0Pα(0)]. (55)

In order to verify the above conjectures, let us now make use of the formalism of quantum
trajectories [15, 21, 27] to solve the master equation (13). More precisely, a specific quantum
trajectory method, the orthogonal unraveling, is distinguished by the physics of pointer states
because the deterministic part of the associated stochastic differential equation coincides with
the nonlinear equation (11).

We start with a general description of the quantum trajectory approach and the orthogonal
unraveling in section 5.1. The latter will be applied to collisional decoherence in section 5.2.
This will allow us to evaluate the statistical weights of the pointer states in section 5.3.

5.1. Quantum trajectories and the orthogonal unraveling

5.1.1. Quantum trajectories. In the quantum trajectory approach, the wavefunction
corresponding to a pure initial state |ψ(0)〉 is propagated stochastically to generate pure
state trajectories {|ψi(t)〉}, whose ensemble average recovers the solution of the master
equation (12), i.e.

exp(Lt)|ψ(0)〉〈ψ(0)| = E(|ψi(t)〉〈ψi(t)|). (56)

Such a stochastic process is called an unraveling of the master equation. A common unraveling
is provided by the quantum Monte Carlo method [28, 29] which is based on a piecewise
deterministic process. Here, one realization of a trajectory consists of smooth deterministic
pieces generated by an effective (non-Hermitian) Hamiltonian, in our case

Heff = H − ih̄

2

∫ ∞

−∞
dqL†

qLq, (57)

which are interrupted by random jumps. The jumps occur with the rate

rq = 〈
L†

qLq

〉
, (58)
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an expectation value with respect to |ψi(t)〉, and they are effected by the operators

Jq = Lq/
√

rq . (59)

The quantum Monte Carlo method is not the only stochastic process satisfying (56). In fact,
there exists an infinite set of these stochastic processes, because the convex decomposition of
the density matrix on the left-hand side of (56) is not unique. For instance, other unravelings
can be obtained from the quantum Monte Carlo method, by noting that the generator L does
not uniquely fix the Lindblad operators Lq and the Hamiltonian H [29, 21]. This is due to the
fact that the master equation (12) is invariant under certain transformations of the Lindblad
operators, such as the addition of a complex multiple zq of the identity I:

Lq → L′
q = Lq + zq I. (60)

In the latter case, also the Hamiltonian must be transformed as

H → H′ = H +
1

2i

∫ ∞

−∞
dq

(
z∗
qLq − zqL†

q

)
, (61)

in order to assure the invariance of the master equation.

5.1.2. The orthogonal unraveling. To obtain a different, but again piecewise deterministic
unraveling, we now make the choice zq = −〈Lq〉. It then follows that the deterministic pieces
of a sample path are given by the solution of the nonlinear equation (16) (or equivalently the
corresponding projector equation (11)). The jumps occur with the rate

rq = 〈
L†

qLq

〉 − 〈
L†

q

〉〈Lq〉, (62)

and are caused by the nonlinear operators

Jq = (Lq − 〈Lq〉)/√rq . (63)

As a distinctive feature, the states |ψq(t)〉 = Jq |ψ(t)〉 into which the system may jump are
orthogonal to the original state |ψ(t)〉, thus justifying its naming. (The states |ψq(t)〉 are not
necessarily mutually orthogonal, though.) To our knowledge, this unraveling was first noted
by Rigo and Gisin [16], although it has not been studied numerically so far.

A related unraveling, which is also referred to as the ‘orthogonal unraveling’, was
introduced by Diósi [15, 30]. Here, the deterministic pieces of the evolution are as well
generated by (16). However, the states |ψq(t)〉 into which the system may jump are obtained
differently, as the eigenvectors of the Hermitian operator

(1 − Pψ(t))L(Pψ(t))(1 − Pψ(t)), (64)

where Pψ(t) ≡ |ψ(t)〉〈ψ(t)|. As a consequence, these states are also mutually orthogonal
(in finite dimensional systems). Since the orthogonal unraveling of [30, 15] requires the
diagonalization of the operator (64), it is much more involved than the one defined by (16),
(62) and (63), which is why we will use the latter in the following.

5.1.3. Pointer states and the orthogonal unraveling. As mentioned above, all unravelings
are equivalent in the same sense as the different convex decompositions of the density matrix
eLt ρ0. Note, however, that a preferred set of pure states—the pointer basis—may be singled
out through the environmental coupling. In that case, those unravelings are distinguished
which generate for any initial state an ensemble of these state-independent projectors. An
unraveling will achieve this job if (a) its deterministic part exhibits stable fixed points or
solitons Pα = |πα〉〈πα|, which (b) are characterized by a vanishing jump rate, r(Pα) = 0. In
that case, the sample paths of the process will end up in one of the states Pα , by all means.
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Hence, the ensemble mean is of the form (3), such that the fixed points or solitons Pα can be
identified with the pointer states of the system.

For the case of collisional decoherence, the orthogonal unraveling fulfills the aforesaid
conditions. (a) Its deterministic part is given by (17) which exhibits the solitonic solutions
π(x) shown in figure 2. We shall see explicitly in section 5.2.1 that these states are attractive
fixed points. (b) We will show in section 5.2.2 that the jump rate (62) vanishes for the solitons
π(x), which finally demonstrates that our ‘candidate’ pointer states π(x) are genuine pointer
states Pα in the sense of (1). Moreover, this shows that the orthogonal unraveling is a very
efficient numerical scheme for the long time solution of the master equation (13), since the
state is no longer affected by the stochastic part, once it has turned into the soliton, and the
trajectory is therefore more easy to integrate.

We note that the orthogonal unraveling is not the only stochastic process which generates
the ensemble of pointer states. In fact, there is a diffusive unraveling [31], which also involves
(11) as its deterministic part. It was applied in [6] to investigate pointer states in a linear
model.

5.2. Unraveling collisional decoherence

We now apply the described orthogonal unraveling to collisional decoherence (13), first
evaluating the deterministic part (16) of the stochastic process in section 5.2.1 and then the
stochastic one (62) and (63) in section 5.2.2.

5.2.1. Deterministic evolution. Applying (16) to the case of collisional decoherence yields
the soliton equation (17) discussed in section 3.2. We will now further simplify this equation,
by considering initial states

�0(x) =
N∑

i=1

ci(0)φi(x, 0), (65)

which are superpositions of non-overlapping wavefunctions φi(x, 0),

φi(x, 0)φ∗
j �=i (x, 0) = 0. (66)

The latter are assumed to be localized in the sense that

σ 2
φi

<
2πh̄2

σ 2
G

, (67)

where σ 2
φi

and σ 2
G denote the variances of the distributions |φi(x, 0)|2 and G(q), respectively.

Under this assumption, which will be justified at the end of this section, one can extract a
system of evolution equations for the time evolution of the coefficients in (65):

d

dt
ci(t) = −

⎛
⎝ N∑

j=1

Fij |cj (t) |2 −
N∑

j,k=1

Fjk|cj (t)|2|ck(t)|2
⎞
⎠ ci(t). (68)

Here, the matrix Fij ≡ F(xi − xj ) is obtained from the localization rate (15), where the
xi ≡ 〈x〉φi

denote the mean positions of the constituent wavefunctions φi(x, t). The latter
evolve according to

∂tφi(x, t) = − h̄

2 m i
∂2
xφi(x, t) + φi(x, t)[|φi |2](x, t)

+ φi(x, t)

N∑
j=1,j �=i

|cj (t)|2γ̃ij (x, t), (69)
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where  is defined in (18) and γ̃ij is a rate of the order of γ ,

γ̃ij (x, t) ≡ |φi |2 ∗ F(x, t) − |φj |2 ∗ F(x, t) + Fij . (70)

Let us now verify that �t(x) = ∑N
i=1 ci(t)φi(x, t), with ci(t) and φi(x, t) solutions of (68)

and (69), evolves according to (17). First, we note that the assumption (67) leads to the
approximation ∫ ∞

−∞
dx|φi(x)|2 eiqx/h̄ � eiqxi/h̄, (71)

for all q contributing appreciably to integrals weighted with the momentum transfer distribution
G(q). This, in turn, implies

Fjk = F(xj − xk)

�
∫ ∞

−∞
dx|φj (x)|2(|φk|2 ∗ F)(x). (72)

Hence, we find that
∫ ∞
−∞ dx|φi(x)|2(|φi |2 ∗ F)(x) � 0, and one thus obtains

[|φi |2](x, t) = −(|φi |2 ∗ F)(x, t). (73)

Now, consider the time derivative of �t(x), which gives

∂t� = − h̄

2 m i

N∑
i=1

ci∂
2
xφi −

(
N∑

i=1

ciφi

) ⎛
⎝ N∑

j=1

|cj |2(|φj |2 ∗ F) −
N∑

j,k=1

|cj |2|ck|2Fjk

⎞
⎠ , (74)

where we dropped the arguments for brevity. In (74), we used (68)–(70), (73), the fact that
Fii = 0 and the normalization condition

∑N
i=1 |ci |2 = 1. Now, we replace Fjk in (74) by the

right-hand side of (72), and use (66), which yields

∂t�t (x) = − h̄

2mi
∂2
x�t (x) − �t(x)

(
|�t |2 ∗ F(x) −

∫ ∞

−∞
dx|�t |2(y)(|�t |2 ∗ F)(y)

)
. (75)

Finally, by using (15), we obtain

∂t�t (x) = − h̄

2mi
∂2
x�t + γ�t(x)

(
|�t |2 ∗ Ĝ (x) −

∫ ∞

−∞
dy|�t |2(y)(|�t |2 ∗ Ĝ)(y)

)
, (76)

which confirms that �t(x) evolves according to (17).
Let us now discuss the solution of equation (68) for the time evolution of the coefficients.

We first consider situations where the wave packets φi(x) are sufficiently far apart such that
the localization rate is saturated, i.e. Fij = γ (1 − δij ). Under this assumption, (68) reduces to
the equation

d

dt
ci(t) = −γ

⎛
⎝ N∑

j=1

|cj (t) |4 − |ci(t)|2
⎞
⎠ ci(t), (77)

which was already studied in [32] in the context of a discrete model for quantum measurement.
It is shown there that all stable fixed points of (77) have the form |ci | = δi,n, and that the
particular fixed point |ci | = δi,m, with

m = arg max
i

(|ci(0)|2), (78)

is approached monotonically, i.e. the component with the largest initial weight wins. This
behavior is visualized in figure 6 which was obtained by solving (77) numerically for the
case N = 3. Here, the x- and the y-axis indicate the weights p1 = |c1|2 and p2 = |c2|2,
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Figure 6. Numerical solution of (68) for N = 3. The x-axis gives p1 = |c1|2, the y-axis p2 = |c2|2
and |c3|2 is fixed by normalization. Left: trajectories indicating the flow into the stable fixed points
|ci | = δi,n, (n = 1, 2, 3). Right: regions of attraction of the stable fixed points; the area denoted
with n is the region of attraction of the fixed point |ci | = δi,n.

Figure 7. Similar to figure 6, but the wave packets φi(x) are positioned closer such that the
localization rate is unsaturated, i.e. Fij � γ (1 − δij ). The stable fixed points are still of the form
|ci | = δi,n, but they may be approached non-monotonically and the regions of attraction, shown
on the right, are deformed compared to the saturated case.

respectively. The plot on the left-hand side shows various trajectories, illustrating in particular
the fixed points. The plot on the right displays the regions of attraction of the stable fixed
points |ci | = δi,n, in agreement with the criterion (78). For instance, area 1 highlights the
region of attraction of the fixed point |ci | = δi,1.

Figure 7, on the other hand, depicts a scenario where the wave packets φi(x) are close
together such that the localization rate is unsaturated, i.e. Fij � γ (1 − δij ). Here, we
choose N = 3 wave packets with non-equidistant position expectations, (x1, x2, x3)σG/h̄ =
18
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(1.4, 1.3, 0.8). Similarly to the saturated case, we observe that all stable fixed points of (68)
have the form |ci | = δi,n. However, the regions of attraction are deformed such that criterion
(78) is no longer valid, and the fixed points are not necessarily approached monotonically.

To see that |ci | = δi,n are stable fixed points of (68), assume that the coefficients are close
by, i.e. |cn(t)| = 1 − ε(t) with ε(0) � 1. It follows from (68) that

ε̇(t) = −
∑

j

Fnj |cj (t)|2 + O(ε2) < 0, (79)

and hence, |ci(t → ∞)| = δi,n.
The knowledge of the fixed points of the coefficients allows one to discuss the asymptotic

evolution of the initial state shown in equation (65). Since the coefficients cj with j �= m tend
to zero asymptotically, it follows that

|ψ(t → ∞)〉 = |φm(t → ∞)〉, (80)

for a specific m (which is given by (78) in the saturated case). The asymptotic behavior of the
wave packets |φm〉 can, in turn, be predicted from equation (69). Since the cj �=m vanish for
large times, the coupling term given by the last summand in (69) vanishes as well, implying that
the time evolution (69) of |φm〉 is asymptotically equal to the soliton equation (17). Therefore,
in the absence of stochastic jumps, the state |�0〉 evolves into that solitonic solution πm(x) of
(17) which is associated with the initial wave packet |φm(0)〉.

It should be mentioned that equations (68) and (69) for the coefficients ci and the
constituent wave packets φi are not completely decoupled, since (68) depends on the matrix
Fij ≡ F(xi −xj ) which contains the position expectations xi of the wave packets φi . However,
the position expectation follows the classical trajectory for sufficiently large κ’s, such that (68)
can be solved without knowing the solution of (69).

Let us now discuss the validity of the assumption of small position variance (67), and
the ensuing approximation (71). It can be justified by our observation in section 4.3 that the
dimensionless pointer width σπσG/h̄ is a function of the parameter κ ≡ σ 2

G

/
mh̄γ only

σπ

σG

h̄
= κ

4aloc
+ aloc, with aloc = 0.4. (81)

Thus, for all κ � 4a2
loc � 1 we find that the position variance σ 2

π of a pointer state is one order
of magnitude smaller than the reciprocal width of the momentum transfer distribution G(q):

σ 2
π � a2

loc
h̄2

σ 2
G

� 0.2
h̄2

σ 2
G

< 2π
h̄2

σ 2
G

. (82)

The above relation for the width of the pointer state is sufficient to justify the approximation∫
dx eiqx/h̄|π(x)|2 � eiq〈x〉π /h̄, as we checked numerically, by using the solitonic solution of

(6). The relative error is less than 2% for q ∈ [−2σG, 2σG] and κ � 10−3.

5.2.2. Stochastic part. Upon inserting the Lindblad operator Lq = √
γG(q) eiqx into (63),

we find that the jump operator takes the form

Jq = Nq(e
iqx/h̄ − 〈eiqx/h̄〉), (83)

with normalization Nq = (1−|〈eiqx/h̄〉|2)−1/2. We consider again states of the form (65) which
are superpositions of non-overlapping (66) and localized (67) wave packets φi(x). Under this
assumption, one can evaluate the expectation value in (83)

〈eiqx/h̄〉� =
N∑

i=1

|cj |2 eiqxj /h̄, (84)
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such that the state �q(x) ≡ Jq�(x) into which the system may jump takes the form

�q(x) = Nq

(
eiqx/h̄ −

N∑
i=1

|cj |2 eiqxj /h̄

)
N∑

i=1

ci φi(x). (85)

Later we will choose the initial wave packets φi(x) to be solitons πi(x). Let us
therefore assume that the φi’s form a basis, such that �q(x) can be represented as
�q(x) = ∑

i ci(q)φi(x). Then the transformed coefficients ck(q) can be evaluated by the
overlap ck(q) = 〈φk|Jq |�〉. Using (66) and (71), this leads to the following expression for the
redistribution of the coefficients due to an orthogonal jump

ck(q) = Nq

(
eiqxk/h̄ −

N∑
i=1

|ci |2 eiqxi/h̄

)
ck. (86)

Similarly, one can evaluate the rate (62) associated with the jump operator of collisional
decoherence,

rq = γ G(q)(1 − |〈eiqx/h̄〉|2). (87)

The above approximation (84) further simplifies this expression,

rq = γ G(q)

⎛
⎝1 −

N∑
j,k=1

|cj |2|ck|2 eiq(xj −xk)/h̄

⎞
⎠ . (88)

One observes that this rate vanishes for the stable fixed points |ci | = δi,n, indicating that the
quantum trajectories of the orthogonal unraveling evolve into the pointer states, the solitonic
solutions of (17). Moreover, we note that the original stochastic process (16), (62), (63)—
which is defined in the infinite dimensional Hilbert space of the system—has been reduced to a
stochastic process in C

N , demonstrating the efficiency of the orthogonal unraveling. However,
due to the finite pointer width (37) the exact expression for the jump rate (87) does not vanish
identically, although it is very small compared to γ . For instance, the numerically obtained
soliton displays a strongly suppressed total jump rate rtot = ∫

dq rq of rtot/γ = 7 × 10−3 for
κ = 10−3, while the superposition state decays with the rate rtot ∼= γ . This implies that the
solitons are not perfect pure state solutions of the master equation (13), though the loss of
purity is small.

5.3. The statistical weights of the pointer states

The previous section showed that the orthogonal unraveling of an initial superposition state
subject to collisional decoherence can be reduced to a stochastic process with respect to the
corresponding coefficients. In particular, this applies to the case where the initial state is a
superposition of pointer states,

|�0〉 =
N∑

i=1

ci |πi(0)〉. (89)

Thus we can now verify, by using the discrete process defined by equations (68), (86) and (88),
that after decoherence, the statistical weights of the pointer states are given by the overlap
of the initial state with the initial pointer states. More specifically, this demonstrates that the
initial state �0(x) evolves into the mixture

ρ(x, x ′) =
N∑

i=1

piπi(x)π∗
i (x ′), (90)
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Figure 8. Quantum trajectory generated by (68), (93) and (94) with N = 2. The solid line depicts
the evolution of |c1(t)|2, while the dashed line shows |c2(t)|2. Since there is an odd number of
jumps (three jumps in this example), the trajectory evolves into the fixed point |ci | = δi,1.

where the statistical weights are given by the overlap

pi = |〈�0|πi(x, 0)〉|2. (91)

We first present an analytic proof of the above for N = 2. The general case, N > 2, is then
treated numerically in the following section.

5.3.1. Superposition of two localized states. We consider the expectation value for the
coefficients after a jump, that is

〈ck(q)〉G :=
∫ ∞

−∞
dq G(q)ck(q), k = 1, 2. (92)

Upon inserting (86) one obtains 〈c1(q)〉G = N ′|c2|2c1, with the normalization constant
N ′ = 〈Nq(eiqx1/h̄ − eiqx2/h̄)〉G, see (83). Using |〈c1(q)〉G|2 + |〈c2(q)〉G|2 = 1, we find
|N ′| = 1/(|c1c2|) which implies

|〈c1(q)〉G| = |c2|. (93)

This shows that after an average jump, the moduli of the coefficients are simply interchanged.
This property (which does not hold for N > 2) makes the stochastic process analytically
tractable, not least because the dynamics is independent of the phases of the coefficients.
Since the deterministic part (68) of the evolution is monotonic for N = 2, a trajectory starting
from |c1(0)| < 1/2 will end up in the state |ci(∞)| = δi,1 if and only if an odd number of
jumps occurs in the process. This is demonstrated in figure 8. Crucially, the jump rate rtot (t):

rtot(t) :=
∫ ∞

−∞
dqrq(t)

= 2F(x1 − x2)|c1(t)|2|c2(t)|2, (94)

is unaffected by the jump (93) at all times, since it is invariant under interchanging the
coefficients. Hence, the time dependence of the jump rate is identical for all trajectories,
which, in turn, means that the number of jumps follows an inhomogeneous Poisson process.
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Figure 9. Relative entropy H(fk |pk) of the numerically obtained distribution of pointer states fk
with respect to the expected distribution pk = |ck |2 as a function of the number of trajectories n
generated in the simulation. The plot indicates that the pointer states are distributed according to
the initial overlap |ck |2.

Therefore, the probability for an odd number of jumps, which is equal to the statistical weight
p1 of the pointer state π1(x), is given by

Prob(odd) = (1 − e−2μ(∞)/2), (95)

with μ(t) = ∫ t

0 dτ rtot(τ ) the integrated jump rate. The latter can easily be evaluated by noting
that (68) can be written for N = 2 as

2F(x1 − x2)|c1(τ )|2|c2(τ )|2 = 1

2

d

dt
ln(1 − 2|c1(τ )|2). (96)

Upon inserting this result into (94) we obtain the integrated jump rate

μ(∞) =
∫ ∞

0
dτ

1

2

d

dt
ln(1 − 2|c1(τ )|2)

= − ln(1 − 2|c1(0)|2)/2. (97)

Noting (95), we thus find the probability for an odd number of jumps

Prob(odd) = |c1(0)|2. (98)

This finally confirms that the statistical weights of the pointer states are indeed given by the
expected overlap (91).

5.3.2. Superposition of N > 2 localized states. The stochastic process is much more
involved if the initial superposition consists of more than two pointer states. Our numerical
implementation of the stochastic process defined by (68), (86) and (88) is based on a
Metropolis–Hastings algorithm to draw the momentum transfer q in accordance with the
rate (88), with G(q) a Gaussian. Each of the generated trajectories ends asymptotically in one
of the fixed points corresponding to a pointer state, and we thus obtain a numerical estimate of
the statistical weights by means of the relative frequencies fk, 1 � k � N , of the asymptotic
states. To confirm the expected probability distribution pk = |ck(0)|2, we evaluate the relative
entropy H(fk|pk) between these two distributions. Figure 9 shows the result for a random
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initial state with N = 5 as a function of the number of trajectories n, indicating convergence
to zero. In addition, we found for 100 random initial states, with random 2 < N < 11, based
on 104 trajectories that the relative entropy was always less than 4 × 10−3. This holds both
for cases where the initial wave packets πi(x) are far apart such that the localization rate is
saturated, F(xi −xj ) � γ , and for situations where the wave packets are located close together
such that F(xi − xj ) < γ . We conclude that the asymptotic trajectories are indeed distributed
according to the expected overlap (91).

As an alternative confirmation of the statistical weights, we performed a χ2-test. Similar
to the treatment above, 100 random initial states {�i | 1 � i � 100}, with random 2 < N < 11,
were drawn by the simplex picking method. For each random state, n = 100 trajectories were
generated, each of which ends asymptotically in one of the pointer states. Using the observed
relative frequencies fk, 1 � k � N , of the pointer states, we evaluate

χ2 = n

N∑
k=1

(fk − |ck(0)|2)2

|ck(0)|2 , (99)

for each random state. In order to verify that the pointer states are distributed according to
|ck(0)|2, the set

{
χ2

i

}
must be shown to be sampled from a χ2-distribution with N−1 degrees of

freedom. Comparing the set
{
χ2

i

}
with the α-quantiles3 (denoted by Qα) of the corresponding

χ2-distribution, a typical run shows ten cases where χ2
i > Q0.9 , one case where χ2

i > Q0.99,
but not a single case where χ2

i > Q0.999, as one expects if the
{
χ2

i

}
are χ2-distributed. Like

above, this confirms statistically that the asymptotic trajectories are distributed according to
the expected overlap (91).

6. Conclusion

In this paper, we related the nonlinear pure state equation discussed in [6–8] to a specific
orthogonal unraveling of the collisional decoherence master equation. This gives evidence
that the dynamics of a particle in an ideal gas environment can be represented by an ensemble
of pure state trajectories which evolve into spatially localized pointer states. For sufficiently
strong collisions with the background gas, these solitonic wave packets move according to the
classical equations of motion, thus explaining the emergence of classical dynamics within the
quantum framework.

Once the pointer state is reached by an individual quantum trajectory, the latter is no longer
affected by the stochastic part of the unraveling, such that the integration of the trajectory is
reduced to the solution of the classical equations of motion. This suggests that the orthogonal
unraveling is an efficient algorithm for the long time solution of master equations which
exhibit a pointer basis. On the other hand, also the short time solution turns out to be efficient,
since the orthogonal unraveling can be reduced (under appropriate assumptions) from an
infinite-dimensional unraveling to a stochastic process in C

N .
Future studies might consider the emergence and dynamics of pointer states in dissipative

quantum systems. We note that the present work relies on the model of pure collisional
decoherence which does not describe the long time effects such as dissipation or thermalization.
It would certainly be worth determining the pointer states of a more involved model, such as
the quantum linear Boltzmann equation presented in [33–35]. For large mass ratios between
the test particle and the gas, one expects that the pointer states then evolve according to a
Langevin equation, thus explaining the emergence of classical Brownian motion within the
quantum framework.

3 For instance, the 0.9 quantile is the value such that 90% of the samples lie below Q0.9.
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